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The title problem is solved using the Sherman [1] method which makes it poss-
ible to reduce the problem in question to an auxilliary problem for a solid strip,
a solution for which is obtained with ‘help of the Fourier transform. The solut-
ion of the problem is reduced, in the last stage, to an infinite system of linear
algebraic equations, and the system is at least quasiregular at arbitrarily small
distances from the boundary., A numerical analysis is also given for the follow-
ing three variants of loading of the strip: for longitudinal tension, uniform trans-
verse tension and for uniform pressure along the hole contours.

Let us consider a strip of width 24, weakened by two holes of equal radii R,
symmetrically distributed in transverse direction, their centers at the distance 2¢
from each other (Fig. 1). The strip is acted upon by uniform tensile forces 7. and
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Ty in the longitudinal and transverse direction respectively. We denote by S,
the triply connected region of the strip, and by S,, S, the regions contained with-
in the circlés L, and IL,. The area of the solidstripis S = Sy + §; + §,.
The unknown stresses are conveniently written in the form

Xx(l) = Tx + Xx’ Y‘u(n = Ty + Yy) Xy(l) = X*»y

where X., Y, and X, represent the result of the perturbation caused by the pres-
ence of holes. The Kolosov —Muskhelishvili potentials corresponding to the stresses

X,,Y, and X, are denoted by @, (2) and ¢, (z). The boundary conditions
on the longitudinal boundaries are obvious for the additional stresses X, Y, and X,
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On the state of stress of a strip 1015

and on the circles L; (j = 1, 2) they have the form
@)+ 97E) + $20) = 2bu (¢ — b))+ 24+ 2
(by = —(Tx + Ty)4, hy = (T, — T )4, b1 = —b, = ic)

where C; is a constant not affecting the state of stress,
Following [1], we introduce a new unknown function

200) =, (1) —t @ () —$: () on Ly, j=1,2

and this enables us to construct the functions ¢ (2) and " (z) analytic in the region
§, i.e, in the solid strip. In the region S, these functions are given by the form-

ulas .
cp(z)=q>1(z>—;( @)+ 25 "
2 3
V(@) =) — ;[xp,* (2) + haR ;x,-k ()]
MORE— ng———“:(i)ft
1]75*(2) = "‘m§ Mdt

]
i\,,, = —bj/R, A}a = 1

The integrals in these and in the following formulas are taken in the clockwise direct-
ion,

Let us write the functions @;* (z) and ¥;* (z) for z lying cutside L;, in the
form of series

oo} [
R \F# R \f#
wre==Yen(=s)  wr@=YWs)
k=) ! 171 J
595) = — Po; — B—oi
- b,
By =—Bus+kgo  ;—(k—1q,, , k> 1

_ 1 ¢ k
Okj = ST 1_3 o)t —b;) dt, Py;= ZniR"“ S ©(e) (¢ — b;)" dt
i g

Asuming that ay; and B, are the Fourier coefficients of the function ® (z)
on L, and L, and taking into account the symmetric character of the state of stress
relative to both axes, we have  Quy = Gy, Byg = Pra. When £ =0,2, 4, .
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ayj and [, arereal, and for % =1, 3, 5, ... they are purely imaginary, The
formulas (1) and (2) yield expressions for the potentials ¢, (z) and +, (z) sought,
in terms of the functions ¢ (¢) and y (z) (which have the corresponding state of
stress X (2) Y (2) Xy(l))

=

®1(3) = @ Z)_ZZ“**(: b>m

(3)
ln——O

(5 =9 () — 225‘2’( 5)

j=1k=p
ek .
aoj = Qgj — h2R’ ﬁ:* = 26&5? a:j == Ugjy ﬁ::;‘ = ﬁkjr k > 1

b,
B =B BE =B — AL ot (k—Dais;, k>t

Taking into account what has been said so far, we put ( o;

* and By;* are real
quantities)
ax** = ay*, B = Bii*, k=0,2,4, ..
axs** = ioy*, PBrs** = ify* k=1,3,5,..

Using relations (3) we can [1 —3] reduce the solution of the problem in question to a

solution of an intermediate problem for the region S. The boundary conditions for
the last problem are:

®__ y® _ k41 R \F+2
ro-inp - 5 S ()

R k42
b ?~=-_.—') —  (4)
J=1 k==p & t_bj
k4 2) et R\ 4 i
( + )akj F(n——b—]) }1 ‘—-"J:ila
V=T B W= AR a = DE B E>1

and the solution obtained using the integral Fourier transforms, has the form
=

@) =— i\ Hy(p)eimwe L

—_—0
o

=1 § ({1 2) s 2] o

(5)

Hy(p) = 2» T () {l(a; (R) + 29 () Ty, 5(n) 4 2820y ()] a5* — Ty () B;*}
Hay(p)= Z T () {l(2n2—a; (w) b (u)) Ty, 5(w) — 2equb(p) Ty, 5(p) 10 * +
FE
b@Tas B Titw) = -t
Ty 5(n)

— (eipn)®
Ty ; (1) cmigchaz#—i-sm}—-shw, o) =7+ =%
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T3, ;(n) = sin jizl- chep - cosj%sh e,  b(u)=1—7y(
2y(wW)=1—2p+ e, & = Rla, e = c/a

It should be noted that Hy (1) and H, (u) are symmetric functions, and the
expressions given here are for p > 0 only.

The only unknown quantities left are a;* = o;* and Bi* = By*. To
find them, we require an infinite system of linear algebraic equations. This can be
constructed e, g. by first obtaining [1] an integral equation (for ® (f)) with a degener-

ate kemel oo " x
o) =e)—FH—F0+ Y[ (F2) + W (Z5) |+

k=0

Q1 On L,

oc

- n+k+l
op =8 o (- 1)"*12(::,";05“(%) ket
n==0

o = st 3 (1% (3)" o+ 01088 [Chinn
L]

(-8'2'—)2 Ci"‘t:lk+i] + B::' 1C£+k}

B a1, 8=0, knt

n m!
Cn=m—my* &~

The functions @(¢) and ¢ (¢) can be found using formulas (5). Solving the integral
equation (6), we arrive at the required system

Doyri=g, k=1,2,3,... (M
Jum]
Ty = ¥, Zojin = 51*; g1=—2hR, ga=—mR, g =0, k>3
and we write the coefficients @x; as follows (6;,; is the Kronecker delta)

Ggma1, a1 = Ogmar, gna1 — S T (1) {Toan (W) [403+ 29(1) (2 +am(p)+  (8)

0

@ (1)) + Gm (1) @ ()] + 2eatt [fm (1) T (1) + F (1) Tt ()] +
4e,%: T (1)} dp + (7 + 1) emnK (m, 1) [Crmnﬁu-z - (_fzs_)z C:::-u]

Gymyg, onig = 65&14)-162m+2, anig — 5. T an (1) Totn (n)dp
0
Qpm41, ane2 == j T yn (1) [fn(n) Ifn (m)+ 232}‘1-‘183“(”)] du + TmaK (M, —n)
H

Gamszytnis = | Tun () [fr (1) T (1) + 20020 ()] G + TrunK (— m, 1)
[
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zgl"“"“? P

Ton(p) = (m + 1)1 nl 2p + sh 2p

K (m, n) = cos (m — n) 5 — sin (m + n) &

r mnu (1) = Tm W) sn (1)) Emn = (8g/2)™"*2
1 (p) = 21’ (n) + ay ), Tmn = smcml
8V =1, §W =1, k>2;, m,n=0,1,2,...

Relations (8) yield the following expressions which reduce considerably the amount
of numerical computations required:

a
7;""7‘*=,:j[: © a=2m+41, 2m4+2 PB=2n+1, 2m42

Analysing the expressions (8) we find, that the system (7) is at least quasiregular
at arbitrarily close distances from the boundary, Solving the system (7) and then com-
puting the stresses with help of the known [4] formulas, we complete the investigation
of the problem formulated above,

Numerical analysis, some results of which are quoted below, was carried out for

& = 0., 0.2, 0.3, 0.4, 0.45 and e = (1 + &) /3 (in the latter case all three
necks have the same width, We recall that e; and & are the ratios of the hole
radius and the half-distance between the hole centers respectively, to the half-width
of the strip). The computations were carried out for three cases of strip loading given
at the beginning of this paper. The infinite system (7) was truncated, for the given
values of &, to 14, 18, 26, 34 and 40 equations. The longitudinal boundary cond-
itions were satisfied in all cases practically 100%, The absolute error in the wonst case
of & = 0.45 was of the order of  10-8. At the hole contours the boundary condit-
ions were also satisfied to high order of accuracy, the error in the worst case of & =

0.45 being equal to O. 57%,

All computations were carried out in the first quadrant, and some of the resuits
are given in tables, The upper line in each pair of values corresponds to the case of
a strip stretched in the longitudinal direction by the force 7. = const, and the
lower line to the stretching by the force Ty = const. Multiplying the relevant valu-
esby Tx or Ty asappropriate, gives the actual values of the stresses, The Tables
can also be used to obtain the comresponding stresses for a strip subjected to a uniform
load P along the hole contours, In this case both numbers are added together, the
sum reduced by 1, and the result multiplied by P,

Table 1 gives the strestes 0 along the hole contoums (angle @ is counted from
the point A4 in the direction ABC).

The stress S, at the hole contours was computed using a 15° step, Table 1
quotes the values for a 30° step, and this means that some of the extremal values
(from the computations using a narrower step) are missing, We give them here: for

Ty= 0, g = 0.4, 0 =105° o0p=—18489 T, for T,=0, e, =03, 0=

105% oy = 3.8030 Ty and for Tx =0, & = 0.45, 8 = 135° : gp = 8.7166 Ty.

Table 2 gives the values of the stress X! along the vertical symmetry axis.

The points are sampled in the direction 0ACD , using astep (¢ — R)/3 on the
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Table 1
£ 9°=0 30 80 90 120 150 180
ot 3.068| 2.079| 0054 | —1.006 | —0.014 2.054 3.008
4 _o.960 | —o.024 | 1.941 3.006 2.05 0.010 | —1.020
o3 3.313| 2.4121 0.219 | —1.108 | —0.160 2.196 3.503
. —0.816 | —0.205 | 1.745 3.181 2.401 0.082 | —1.255
0.3 4193 | 3.38| 0.441 | —1.331 | —0.588 2.333 4.600
9 | ~0.832| —o.652| 1.528 3.610 3.321 0.490 | —1.956
od 7.967| 4.507] 0.625 | —1.640 | —1.558 1.812 8.146
| 2475 | —1.404| 1.203 4.250 5.399 2.927 | —4.223
045 | 18:0| B.85| 0777 | —4.75 | —2.409 | —0.24 15.052
| 552 | —2.143 | 1.110 4.608 7.281 8.475 | —8.418
Table 2
[N i 2 3 4 5 [ 8

o4 1.445 | 1.443 | 1.307| 3.068| 3.08| 41.147| 1.038 | o0.953
. 0.046 | 0.048 | o0.026 | —0.960 | —1.020 | 0.048 | 0.058 | 0.161
0.2 1.600 | 1.568 | 1.208| 3.313| 3.503| 41.52¢| 1.176 | o0.821
2 | _0.004 | —0.035 | —0.495 | —0.846 | —1.255 | 0.045 | 0.263 | 0.703
o3 | 2898 | 3.007| 3390 4198| 4600| 2.405| 1.520 | 0.639
3 | —0.428 | —0.470 | —0.603 | —0.831 | —1.955 | —0.074 | 0.770 | 1.945
o4 | 68| 6988 | 7.320| 7.967| 8.446| 4.873| 2.658 | 0.432
4 | _4.880 | —1.910 | —2.004 | —2.477 | —4.222 | —0.370 | 2.478 | 5.729
o | 1498 | 15.096 | 15.443| 16.076 | 15.052 | 9.508 | 4.907 | 0.205
45| _5.441 | —5.170 | —5.295 | —5.497 | —8.371 | —0.666 | 6.093 | 13.29¢

Table 8

[ i 2 3 & 5 [

0496 | —o0.012 | —0.007 | 0.007 | 0.006 | 0.003

0.1 0.685 1.094 1,020 | 1.004 | 0.996 | 0.997

0504 | —0.220 | —o0.03 | o0.022 | 0.020 | o0.014

0.2 0.134 1.284 1.418 | 1.008 | 0.98 | 0.988

0.649 | —0.346 | —0.110 | 0.035 | 0.039 | 0.022

0.3 | _o.45 1.384 1.287 | 1.032 | 0.073 | 0.975

0.5 | —0.279 | —0.247 | 0.03¢ | 0.058 | 0.034

0.4 | _o.458 1.184 1.558 | 1.095 | 0.964 | 0.950

ous| 0589 | —0.443 | —0.337 | o.02 | 0.062 | 0.038

: —0.201 0.916 1.728 | 1.157 | 0.969 | 0.953




1020 N, 1. Mironenko

segment OA (point 1 —4) and astep 2 (c — R)/3 on the segmentCD (poiats 5 —8),

Table 3 contains the stresses Y,V along the horizontal symmetry axis. The points
are sampled beginning from the coordinate origin, in the positive direction of the z -
axis, using a step of 0.4 a.

The stresses at the points belonging to the longitudinal boundaries were computed
using a step of 0.3 a for all given values of 2, ., The values obtained for the stress-
es X, and Yy'Y were used to draw conclusions about the accuracy with which
the boundary conditions were satisfied, The stress X,'' itself is of particular inter-
est. When T.=const=:0, T, = 0, g = 0.45 , the stress varies at the points in-
dicated (with the accuracy of up to the factor 7T ) as follows: it attains a minimum
of 0,2951 at the point D , is equal to 7.0142 at the point z = 0.3 4, and from
then on it diminishes in value and tends to unity (X.V) = 1.0109 T.at z = 2.1 a).
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